学年	高校2年	教科	数学科	科目	数学Ⅱ	単位数	5
教科書名		改訂版 数学Ⅱ(数研出版) 改訂版 数学Ⅲ(数研出版)		副教材名	サクシード数学Ⅱ+B(数研出版) サクシード数学Ⅲ+C(数研出版)		
コース・クラス		中高一貫理系					

I. 目標

三角関数,指数関数・対数関数及び微分・積分の考えについて理解させ,基礎的な知識の習得と技能の習熟を図り, 事象を数学的に考察する能力を培い,数学のよさを認識できるようにするとともに,それらを活用する態度を育てる。 極限,微分法について理解させ,基礎的な知識の習得と技能の習熟を図り,事象を数学的に考察する能力を培い, 数学のよさを認識できるようにするとともに,それらを活用する態度を育てる。

Ⅱ. 授業のねらい

数学Ⅱ

- 4章 三 角 関 数 … 一般角に対する三角関数を学ぶ。三角関数の周期性を理解させ、そのグラフをかく。 2倍角、半角、3倍角、合成の公式を学び、三角関数の最大値・最小値の問題を解く ことができるようにする。
- 5章 指数関数と対数関数 … 指数・対数の定義を学ぶ。指数関数と対数関数のグラフや性質を理解させる。指数・ 対数関数の性質を数の大小比較や方程式・不等式の解に活用できるようにする。
- 6章 微分法と積分法 … べき関数の微分法積分法を学ぶ。定積分を利用し、図形の面積を求めることができるようにする。方程式の解の個数を調べ、不等式に活用させる。最大値・最小値の問題を解くために、グラフを利用できるようにする。

数学Ⅲ

- 1章 関 数 … 分数関数・無理関数・逆関数・合成関数について理解させる。
- 2章 極 限 … 数列の極限の性質について理解させる。関数の極限について理解し、連続性や中間値 の定理を利用できるようにする。
- 3章 微 分 法 … 導関数の定義を確認し、積・商の導関数について理解させる。また、さまざまな関数 の導関数の問題を取り組ませる。
- 4章 微分法の応用…接線の方程式や関数の極値を求めることができるようにする。

Ⅲ. 授業の進め方

- 1. 教科書を中心とした授業を展開する。国公立難関私立大学理系学部一般選抜に向けて必要となる知識・技能を補足して扱う。
- 2. 定期的に小テスト実施し、定着の度合いを図る。
- 3. 状況に応じて、問題集等の副教材を使用する。

IV. 学習上の留意点

- 1. 教科書,授業用ノート,問題集,問題集用ノートを用意して授業に臨むこと。
- 2. 定期試験の返却後、間違えた問題を確認し、復習を行うこと。
- 3. 提出物の期限は必ず守ること。

V. 定期試験(学年末試験のみ100分)

教科書と問題集の内容を7割、模擬試験レベルの問題を3割程度出題する。初見の問題も出題する。

1学期 中間試験 : 三角関数

1学期 期末試験 : 指数関数と対数関数,微分法

2学期 中間試験 : 微分法と積分法, 関数

2 学期 期末試験 : 極限,微分法

3学期 学年末 : 微分法,微分法の応用

VI. 評価の方法

定期試験、小テスト、課題学習などのルーブリック評価(自己評価)を総合的に評価する。

VII. 授業計画

学期	月	単元・学習項目	評価方法	到達目標
一学期	4567	【数学II】 4章 三角関数 1節 三角関数 2節 加法定理 5章 指数関数と対数関数	定期試験小テスト提出物	 ・一般角、弧度法を理解する。三角関数の定義、相互関係、性質を理解し、活用することができる。 ・三角関数のグラフの基本形を理解し、グラフから関数を導くことができる。 ・三角関数を含む方程式・不等式を解くことができる。 ・加法定理を発展させて2倍角、3倍角、半角の公式、三角関数の合成について理解する。 ・指数関数の定義を理解する。グラフとその性質について理解する。 ・指数関数の最大値・最小値を求めることができる。 ・対数関数の定義を理解する。グラフとその性質について理解する。 ・対数関数の最大値・最小値を求めることができる。 ・対数関数の最大値・最小値を求めることができる。
二学期	9 1 0 11 1 2	6章 微分法と積分法 1節 微分係数と導関数 2節 導関数の応用 3節 積分法 【数学Ⅲ】 1章 関数 2章 極限 1節 数列の極限 2節 関数の極限 3章 微分法 1節 導関数	定期試験小テスト提出物	 ・導関数、微分係数を理解し、曲線の接線を求めることができる。関数の増減、極大、極小に関して理解する。 ・関数の最大値・最小値を求めることができる。 ・微分法を利用して方程式の実数解の個数を求めることができる。 ・微分法を利用して不等式の証明ができる。 ・不定積分を理解する。微分との関係について理解し、定積分を利用して、2 曲線で囲まれた図形の面積を求めることができる。 ・関数の一般的な定義や逆関数、合成関数について理解する。 ・数列の極限の性質について理解する。 ・無限級数とその性質について理解する。 ・関数の極限の性質について理解する。 ・関数の連続性について理解する。 ・同数の連続性について理解する。 ・合成関数の微分法について理解する。
三学期	3	3章 微分法 2節 いろいろな関数の 導関数 4章 微分法の応用 1節 導関数の応用 2節 速度と近似式	定期試験小テスト提出物	 ・三角関数、対数関数、指数関数の導関数について理解する。 ・関数の増減、極値、凹凸、変曲点などを調べてグラフをかけるようになる。 ・微分法が物理学に応用される一例として、速度、加速度があげられる。これらが第1次、第2次導関数の定義と直結していることを再確認する。 ・関数の近似式が、導関数の応用として導かれることを理解する。 ・近似値の計算に微分法が有効に応用されることを理解する。